Más Información
El Nobel de Física de este año es "sobre un descubrimiento que asombró al mundo", la detección de las ondas gravitacionales , una revolución en la astrofísica, que ha abierto una nueva ventana al Universo .
Así lo dijo hoy el secretario de la Real Academia Sueca de Ciencias , Goran Hansson, al anunciar un galardón que sigue al Premio Princesa de Asturias de Investigación Científica que también recibieron este año los estadounidenses Rainer Weiss, Barry C. Barish y Kip S. Thorne.
El 14 de septiembre de 2015, el experimento LIGO detectó por primera vez las ondas gravitacionales, cuya existencia formuló Albert Einstein en su Teoría de la Relatividad General, aunque el anuncio oficial se hizo cinco meses más tarde.
Demostrar la existencia de estas ondas era el último reto pendiente de la Teoría de la Relatividad General , que Einstein formuló en 1915. La Universidad de las Islas Baleares en España, una de las implicadas en la colaboración científica LIGO, ofrece en su web algunas respuestas para entender qué son y para qué sirven.
¿Qué son las ondas gravitacionales?
Usando una metáfora, la Universidad las define como "olas en el océano cósmico" . Einstein descubrió con la Teoría de la Relatividad que los objetos que se mueven en el Universo producen ondulaciones en el espacio-tiempo -una especie de tejido en el que se desarrollan todos los eventos del Universo- las cuales se propagan por el espacio. Estas son las ondas gravitacionales.
¿Para qué sirve haberlas detectado?
Las ondas gravitacionales
son "una nueva ventana al Universo". Gracias a ellas se pueden entender los mecanismos por los que suceden algunos de los sucesos más violentos del Cosmos , como las colisiones entre agujeros negros o las explosiones de estrellas. Se podría incluso estudiar lo que pasó un milisegundo después del Big Bang.
También marcarán el inicio de una nueva era en astronomía porque el Universo es casi transparente para ellas, lo que permitirá observar fenómenos astrofísicos que de otra manera permanecerían ocultos -la formación de agujeros negros o cómo se comporta la materia en condiciones extremas-.
¿Pero, por qué son tan importantes para explorar el Universo?
El conocimiento del cosmos se realiza ahora, principalmente, a través de la radiación electromagnética (luz), con ellas se puede "ver", mientras que con las ondas gravitacionales sería como "oír", lo que permitiría pasar a través de los objetos que hay entre la Tierra y el otro extremo del Universo, pues las ondas lo atraviesan todo.
¿Por qué se ha tardado tanto en saber a ciencia cierta de su existencia?
Durante décadas ese nuevo tipo de ondas fue casi ignorado. Algunos científicos dudaban de su existencia y otros pensaban que son tan débiles que nunca se podrían detectar. Pero en la década de los setenta el descubrimiento de los púlsares -estrellas de neutrones que emiten luz mientas giran- llevó a la primera evidencia indirecta de su existencia.
Además, los efectos de las ondas gravitacionales son tan pequeños que se necesita detectores gigantescos para intentar dar con ellas.
¿Cómo son esos detectores?
Se trata de enormes instalaciones que usan una tecnología llamada interferometría láser. El mayor de ellos es el Observatorio de interferometría láser de ondas gravitacionales (LIGO) en Estados Unidos, otros detectores son el Virgo en Italia y el GEO600 en Alemania.
Hasta ahora, los detectores están en la superficie terrestre, pero en un futuro se situarán bajo tierra y la misión eLisa de la Agencia Espacial Europea (ESA) va a colocar un detector en el espacio, lo que permitirá detectar ondas gravitacionales en un rango diferente de frecuencias.
Las ondas gravitacionales
"contienen la promesa de lo desconocido", asegura la página divulgativa de la colaboración científica LIGO, pues "cada vez que los humanos hemos mirado al Cosmos con 'ojos' nuevos hemos descubierto algo inesperado que ha revolucionado la forma en la que vemos el Universo y nuestro lugar en él".
jpe